Свежие публикации на форуме


Автор Тема: На Европе (спутник Юпитера) больше кислорода чем на Земле?  (Прочитано 3882 раз)

0 Пользователей и 1 Гость смотрят эту тему.

Оффлайн TripToNightАвтор темы

  • Admin
  • *****
  • Сообщений: 87
  • trutrance.ru
    • trutrance.ru

Американский астроном установил, что на спутнике Юпитера Европе содержится намного больше кислорода, чем считалось до сих пор. Ученый выступил с докладом о своем открытии на 41-й встрече отделения по изучению планет американского астрономического общества. Коротко о работе пишет портал Space.com.

Европа - шестой спутник Юпитера - является одной из крупнейших лун в Солнечной системе. Поверхность Европы покрыта толстым слоем льда. Большое количество данных указывают, что подо льдом на глубине нескольких километров скрыт водный океан. Некоторые оценки предполагают, что в нем содержится больше воды, чем во всех земных океанах.

В воде подледного океана содержится растворенный кислород. Этот элемент образуется на поверхности луны под воздействием частиц солнечного ветра и попадает в океан в результате геологических процессов. Чтобы оценить, сколько кислорода оказывается под поверхностью спутника, автор новой работы определял влияние некоторых из них. Ученый рассматривал постепенное накопление свежего льда на поверхности, образование трещин, которые заполняются этим льдом, и разрушение некоторых участков поверхностного слоя (постепенно они заменяются на новые).

В своей работе исследователь использовал существующие оценки интенсивности образования кислорода на поверхности. Он заключил, что интенсивность поступления этого элемента в воды океана чрезвычайно высока. По мнению ученого, через несколько миллионов лет концентрация кислорода в подледном океане Европы превысит его концентрацию в земных океанах.

Кислород является элементом, необходимым для существования большинства форм земных организмов (для некоторых живых существ O2 токсичен, а часть обитателей планеты к нему "равнодушна"). Содержание этого элемента в водах Европы достаточно для поддержания существования не только одноклеточных, но и более крупных форм.

Благодаря своим "перспективным" характеристикам, Европа стала целью для ближайшей межпланетной миссии, организуемой Европейским и Американскими космическими агентствами. Недавно группа ученых определила наиболее пригодные для посадки космических аппаратов участки на поверхности юпитерианской луны.

Оффлайн Serpantine

  • user
  • *****
  • Сообщений: 598
  • Пол: Мужской
  • TRIp IN EpIcEntrE
АТМОСФЕРА ЮПИТЕРА
Атмосфера Юпитера представляет собой огромную бушую-щую часть планеты, состоящую из водорода и гелия. Механизм, приводящий в действие общую циркуляцию на Юпитере, такой же, как и на Земле: разность в количестве тепла, получаемого от Солнца на полюсах и экваторе, вызывает возникновение гидродинамических потоков, которые отклоняются в зональном направлении кориолисо-вой силой. При таком быстром вращении, как у Юпитера, линии то-ка практически параллельны экватору. Картина усложняется конвек-тивными движениями, которые более интенсивны на границах меж-ду гидродинамическими потоками, имеющими разную скорость. Конвективные движения выносят вверх окрашивающее вещество, присутствием которого объясняется слегка красноватый цвет Юпи-тера. В области темных полос конвективные движения наиболее сильны, и это объясняет их более интенсивную окраску.
Так же как и в земной атмосфере, на Юпитере могут форми-роваться циклоны. Оценки показывают, что крупные циклоны, если они образуются в атмосфере Юпитера, могут быть очень устойчивы (время жизни до 100 тысяч лет). Вероятно, Большое Красное пятно является примером такого циклона. Изображения Юпитера, полу-ченные при помощи аппаратуры, установленной на американских аппаратах "Пионер-10" и "Пионер-11", показали, что Красное пятно не является единственным образованием подобного типа: имеется несколько устойчивых красных пятен меньшего размера.
Спектроскопическими наблюдениями было установлено при-сутствие в атмосфере Юпитера молекулярного водорода, гелия, ме-тана, аммиака, этана, ацетилена и водяного пара. По-видимому, эле-ментный состав атмосферы (и всей планеты в целом) не отличается от солнечного (90% водорода, 9% гелия, 1% более тяжелых элемен-тов).
Полное давление у верхней границы облачного слоя состав-ляет около 1 атм. Облачный слой имеет сложную структуру. Верх-ний ярус состоит из кристаллов аммиака ниже, должны быть распо-ложен облака из кристаллов льда и капелек воды. Инфракрасная яркостная температура Юпитера, измеренная в интервале 8 - 14 мк, равна в центре диска 128 - 130К. Если рас-смотреть температурные разрезы по центральному меридиану и эк-ватору, можно увидеть, что температура, измеренная на краю диска, ниже, чем в центре. Это можно объяснить следующим образом. На краю диска луч зрения идет наклонно, и эффективный излучающий уровень (то есть уровень, на котором достигается оптическая тол-щина t=1) расположен в атмосфере на большей высоте, чем в цен-тре диска. Если температура в атмосфере падает с увеличением вы-соты, то яркость и температура на краю будут несколько меньше. Слой аммиака толщиной в несколько сантиметров (при нормальном давлении) уже практически непрозрачен для инфракрасного излуче-ния в интервале 8 - 14 мк. Отсюда следует, что инфракрасная ярко-стная температура Юпитера относится к довольно высоким слоям его атмосферы. Распределение интенсивности в полосах СН показы-вает, что температура облаков значительно больше (160 - 170К) При температуре ниже 170К аммиак (если его количество соответствует спектроскопическим наблюдениям) должен конденсироваться; по-этому предполагается, что облачный покров Юпитера, по крайней мере частично, состоит из аммиака. Метан конденсируется при бо-лее низких температурах и в образовании облаков на Юпитере при-нимать участие не может.
Яркостная температура 130К заметно выше, чем равновесная, то есть такая, которую должно иметь тело, светящееся только за счет переизлучения солнечной радиации. Расчеты, учитывающие измере-ние отражательной способности планеты приводят к равновесной температуре около 100К. Существенно, что величина яркостной температуры около 130К была получена не только в узком диапазо-не 8-14мк, но и далеко за его пределами. Таким образом, полное из-лучение Юпитера 2,9 раз превосходит энергию, получаемую от Солнца, и большая часть излучаемой им энергии обусловлена внут-ренним источником тепла. В этом смысле Юпитер ближе к звездам, чем к планетам земного типа. Однако источником внутренней энер-гии Юпитера не являются, конечно, ядерные реакции. По-видимому, излучается запас энергии, накопленный при гравитационном сжатии планеты (в процессе формирования планеты из протопланетной ту-манности гравитационная, когда гравитационная энергия пыли и га-за, образующих планету, должна переходить в кинетическую и затем в тепловую).
Наличие большого потока внутреннего тепла означает, что температура довольно быстро растет с глубиной. Согласно наиболее вероятным теоретическим моделям она достигает 400К на глубине 100 км ниже уровня верхней границы облаков, а на глубине 500 км - около 1200К. А расчеты внутреннего строения показывают, что ат-мосфера Юпитера очень глубокая - 10000 км, но надо отметить, что основная масса планеты (ниже этой границы) находится в жидком состоянии. Водород при этом находится в вырожденном, что то же самое, в металлическом состоянии (электроны оторваны от прото-нов). При этом в самой атмосфере водород и гелий, строго говоря, находятся в сверхкритическом состоянии: плотность в нижних слоях достигает 0,6-0,7г/см , и свойства скорее напоминают жидкость, чем газ. В самом центре планеты (по расчетам на глубине 30000 км), возможно, находится твердое ядро из тяжелых элементов, образо-вавшееся в результате слипания частиц металлов и каменных обра-зований.